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ABSTRACT 

Genetic relationships between yield 
and type traits were investigated using 
multiple-trait REML procedures with an 
animal model. Computing strategies 
were developed to deal with large popu- 
lations and numbers of traits. Data con- 
sisted of records for 3 production and 15 
type traits for 20,836 primiparous cows 
from 1982 to 1988. The model included 
2358 herd management effects, 28,749 
animal effects, and 23 groups for un- 
known parents. (Co)variance components 
were estimated using a canonical 
transformation with an accelerated 
expectation-maximization REML al- 
gorithm. Direct inversion of the coeffi- 
cient matrix and solution to the trans- 
formed single-trait equations were by a 
sparse matrix solver. 

Heritabilities for milk, fat, and protein 
yield were .44, .42, and ,40, respectively. 
Heritabilities for type traits ranged from 
.10 to .42; the largest was for stature. 
Dairy form had the largest genetic corre- 
lations with yield traits, which ranged 
from .59 with milk to .68 with fat. Ge- 
netic correlations between all yield and 
most type traits were positive (from .01 
to .68); exceptions were fore udder at- 
tachment, udder depth, and front teat 
placement (-.01 to -.44). Selection 
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solely for increased milk yield would 
cause some udder characteristics to de- 
teriorate. Restricted selection for milk 
yield while holding udder traits constant 
would decrease response in milk yield by 
15%. 
(Key words: restricted maximum likeli- 
hood, multivariate analysis, animal mod- 

Abbreviation key: AM = animal model, CPU 
= central processing unit, EM = expectation- 
maximization, HYMC = herd-year-month- 
classification, HYS = herd-year-season, SM = 
sire model. 

el) 

INTRODUCTION 

The primary emphasis in dairy cattle selec- 
tion is for yield traits because highest produc- 
ing cows usually are more profitable (1). In 
general, profitability will be even higher if 
cows produce large quantities of milk in rou- 
tinely initiated lactations while also remaining 
functionally sound. Selection on yield traits 
alone could decrease merit for other traits. 
Selection emphasis on type traits associated 
with increased herdlife may be beneficial to 
decrease involuntary culling and increase 
profitability (16). One of the primary reasons 
for collecting and utilizing information on type 
is to aid breeders in selecting profitable, func- 
tional cows so that early culling for causes 
unrelated to yield (involuntaq culling) can be 
avoided. 

Since 1983, the Holstein Association has 
collected data on 14 type traits scored on a 
linear scale (18) as well as overall confoma- 
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tion (final score). Emphasis placed on each of 
these traits in a selection program including 
yield traits depends partly on their genetic 
correlations with yield. In particular, selection 
criteria should include traits that change in the 
undesired direction if selection is for yield 

Information on genetic relationships be- 
tween yield traits and linearly scored type 
traits is limited. Meyer et al. (11) reported 
genetic correlations ranging from -.52 to 2 4  
between linear type scores and milk yield in 
primiparous British Friesians. Udder depth and 
fore udder attachment had largest antagonistic 
correlations with yield (-.52 and -.37, respec- 
tively). Corresponding phenotypic correlations 
were smaller in magnitude and ranged from 
-27 to .21. Genetic correlation between milk 
yield and final score in first parity was -.14. 

Foster et al. (4) obtained genetic correla- 
tions between first lactation herdmate devia- 
tion for milk and fat and linear type traits for 
Holsteins. For linear traits similar to those 
used by the Holstein Association, the largest 
negative genetic correlation with deviation for 
milk was -.12 for udder depth. 

Norman et al. (14) calculated genetic cme- 
lations between first lactation yields and linear 
type traits for Guernseys and Jerseys. Largest 
negative genetic correlations with yield were 
-.59 and -.56 for udder depth and fore udder 
attachment in Jerseys and -.29 and -.25 for 
foot angle and thurl width in Guernseys. For 
both breeds, largest positive correlations with 
yield were for dairy character. Genetic correla- 
tions between milk yield and final score were 
2 5  for Guernseys and .21 for Jerseys. 

These analyses used the sire model (SM), 
which neglects all female relationships. Studies 
using the animal model (AM), which considers 
all known relationships, indicate that it results 
in higher estimates of heritability than SM (12, 
21,22). Visscher and Thompson (22) state that 
SM accounts for the male genetic variation, 
whereas AM takes both male and female ge- 
netic variation into account. If selection inten- 
sity for males were greater than for females, 
the male genetic variance would be smaller. 
Subsequently, SM might underestimate genetic 
variability and, thus, lead to poor estimates of 
genetic parameters, even with large data fiies. 

The AM estimates of genetic parameters 
also could be useful in genetic evaluation sys- 

traits only. 

tems. Many genetic evaluation programs, in- 
side and outside the US, have changed or are 
changing from SM to AM. It appears desirable 
that the parameters for these evaluations be 
derived from the same model as that used in 
the evaluation, i.e., AM. 

Estimates of genetic correlations between 
yield and type traits by an AM were not avail- 
able, and current computing algorithms for 
multitrait REML were inadequate to process 
the large numbers of animals needed to esti- 
mate these parameters with sufficient accuracy. 
Objectives of this study were to develop an 
efficient algorithm to estimate genetic 
parameters with an AM and to apply this 
algorithm to multitrait yield and type data 

MATERIALS AND METHODS 

Data 

Data were from primiparous Holstein cows 
in every third herd enrolled continuously be- 
tween 1982 and 1988 in the Dairy Herd Im- 
provement Registry program. Each animal’s 
record contained 15 type traits and 3 produc- 
tion traits. Type scores and lactation informa- 
tion were collected between 1982 and 1988. 
Type scores included 14 linearly evaluated 
traits (scored on a 50-pint scale) preadjusted 
for age of cow and stage of lactation. Final 
scores were preadjusted for age of cow; low 
m r e s  also were preadjusted upward to elimi- 
nate skewness. Yield records were 305d twice 
daily mature equivalent first lactation yields. 
Only cows with both yield and type informa- 
tion were included, Cows must have been clas- 
sified before 43 mo of age and, at most, 9 mo 
after calving. After edits, the data set contained 
20,836 cows. Additionally, the pedigree file 
contained 5502 dams without records and 2441 
sires, for a total of 28,779 animals. Unknown 
parents were assigned to 23 groups. Records 
for type traits were distributed in 1616 herd- 
year-month-classifcation (HYMC) subclasses. 
Records for production traits were distributed 
in 2358 herd-year-seasons (HYS) for which 
seasons were defined as May to October and 
November to April. Because of the require- 
ments of the computational procedure of an 
identical model for all traits, H Y S  were se- 
lected as the contempomy groups for yield 
and type traits. The bias caused by inappropri- 
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ate contemporary groups for type traits was 
small because of a high level of overlapping: 
74% HYS subclasses contained only a single 
HYMC subclass; the remaining 26% contajned 
2 HYMC subclasses. Means and standard devi- 
ations for the 18 traits are given in Table l. 

Model 

The linear mixed model used was 

y = Hh + Zu + e [11 

where y is a 20,836 x 18 matrix of records; h 
is a 2358 x 18 matrix of fixed contemporary 
groups; u = a + Qg is a 28,779 x 18 random 
matrix of total genetic merit effects; a is a 
28,779 x 18 matrix of additive genetic animal 
effect; g is a 23 x 18 matrix of unknown 
parent p u p s ;  e is a 20,836 x 18 random 
matrix of residual effects; H and Z are inci- 
dence matrices relating h and u to y, respec- 
tively; and Q is an incidence matrix relating 

and residual effects were treated as random 
with variances G Q A and E 8 I, respectively; 
G and E denote covariance matrices among 
the 18 traits for the animal and residual effects, 
respectively; A denotes additive genetic rela- 
tionship among the animals; and 8 denotes 
Kronecker product. 

animals to unknown parent groups. Animal 

Computational Strategy 

The estimates of G and R were obtained by 
multiple-trait REML using a canonical trans- 
formation (6). After the transformation, single- 
trait estimates were obtained using a sparse 
matrix solver modified for the efficient use of 
the supercomputer (12). Standard errors of the 
estimates of variance components were ap- 
proximated as in VanRaden (19); however, the 
accuracy of this approximation for AM has not 
been detennined. 

Three techniques were used to reduce the 
cost of computations approximately 500-fold, 
which made the computations feasible. First, 
the trace function was tabulated from relatively 
few points, to avoid inverting the coefficient 
matrix many times. Subsequent references to 
that function were by interpolation or extrapo- 
lation. Second, to reduce the inversion central 
processing unit (CPU) time, columns of the 

TABLE 1. Means and standard devhtions for the 3 yield 
traits   kilo^) and 15 type traits (points). 

~ 

Trait z SD 

Milk 
Fat 
protein 
P i  score 
SIatare 

Body depth 
Dairy form 

Thurl width 
Rear leg set 
Foot angle 
Fore udder attachment 
Udder height 
Udder width 
udder cleft 
Udder depth 
Front teat DlacPment 

strength 

R W P  angle 

9239.3 inis 
333.8 63.7 
294.3 53.1 
81.6 4.0 
322 8.5 
30.0 7.6 
32.0 7.7 
30.6 7.5 
25.1 5.1 
285 7.3 
272 6.7 
24.5 6.3 
25 5 72 
27.3 7.4 
272 7.3 
272 5.6 
24.0 4.6 
24.8 6.1 

inverse corresponding to animals without 
records were not computed because their con- 
tribution to the trace function is known and 
equals l/a per animal (13), where a is the 
variance ratio. Finally, to obtain better conver- 
gence rate, the expectation-maximization (EM) 
REML algorithm was replaced by the proce- 
dure described by VanRaden (19). 

Interpolation of the Trace Function. Inver- 
sion of the mixed model coefficient matrix 
would have to be perfomed too many times to 
be computationally feasible. Assuming that 
100 rounds of iteration provided adequate con- 
vergence, the EM-type algorithm would re- 
quire 100 rounds x 18 traits = 1800 matrix 
inversions or evaluations of the trace function 

t(a) = t ra~e[A-~C~~(a)]  121 

where Cuu is the submatrix of the inverse of 
the mixed model equations corresponding to 
eauations for animal effects. The trace function 
i i  equivalent to a simpler form after 
agonalizing the system of equations (6): 

n 

i=l 
t(a) = C l/(di + a) 

with di an element of d. Calculating d 
plicitly involves dense matrix algorithms 

di- 

DI 
ex- 
and 
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Figure 1 .  Shape of the trace function obtained from a 
test data set. 

is prohibitively CPU expensive for matrices of 
order greater than 5000, even on supercom- 
puters. Figure 1 presents a typical shape of 
t(a) for different values of a, and Figure 2 
shows the distribution of d, both obtained from 
a data set with 430 animals. 

Because the trace function is continuous 
and smooth, it can be interpolated or e x t r a p  
lated from a small set of points, which can be 
computed explicitly. High accuracy of the ap- 
proximated trace is important because even 
small errors in the value of the trace can cause 
large differences in the value of the REML 
estimates. For example, in this study, W r -  
ences in approximated traces on the fourth 
signiiicant digit caused differences in estimates 
of variance components on the second si@- 
cant digit. The spline functions did not p m  
duce adequate accuracy for the interpolation or 
extrapolation. Much higher accuracy was ob- 
tained using the function that resembles [3] 

i=l 

zwi = 1 141 

Figure 2. The distribution of the diagonal elements d m 
the diagonalized mixed model eqyations obtained from a 
test data set. 

where were estimated separately for each a 
from m closest points, and w1 are arbitrary 
weights. For m = n and w1 = l/n, formulas [41 
and [3] are the same. For m = 1, the weight w1 
is 1, and 6 is approximately an average of all 
elements d. An example of estimating 
parameters 6 in function [4] for m = 1 and m = 
2 is given in the Appendix. Formula [4] with 
m > 2 was not used because of difficulties in 
estimating the parameters 6i. In this study, the 
value of t(a) was computed explicitly only for 
33 points: a = .4, .4 x 1.2, .4 x 1.22, . . . .4 x 
l.232 using the inversion and subsequent refer- 
ences to t(a) used this function with m = 2, w1 

EM-Type Formulas. In our experiments, the 
EM REML formula (2) was very slow and did 
not converge in 500 rounds. The formula by 
VauRa&n (19) 

= .2, and wz = .8. 

where a is a smgle-trait direct genetic animal 
effect and -O < < 1, converged up to 20 
times faster but was dependent on the choice 
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TABLE 2. Estimates (Est) of midual and genetic variances war), heritabilities, and approximate standard errors for the 
18 traits. 

R C S W  Genetic Ekritability 

Milk1 10.6 .1 8.4 .4 .44 .01 
Fa? 14.3 .1 10.5 .5 .42 .01 
Protein' 9.8 .1 6.5 1.3 .40 .01 
Final score 9.6 .1 3.8 .3 2 9  .02 
Stature 33.7 .4 24.5 1.3 .42 .01 

33.2 .4 13.6 1.1 .29 .02 
31.1 .3 17.0 1.1 .35 .02 

strength 
Body depth 
Dairy form 34.4 .4 13.5 1.1 .28 .02 
Rump angle 172 2 6.8 .6 .28 .02 
Thurl width 32.8 .3 11.7 1 .o .26 .02 
Rear leg set 33.9 .4 6.2 1 .o .16 .02 
Foot angle 30.1 .3 4 5  .8 .13 .02 
Fore udder attachment 34.9 .4 10.8 1.1 24 .02 
Udder height 39.4 .4 7.3 1.1 .16 .02 
Udder width 36.7 .4 8.6 1.1 .19 .02 
Udder cleft 25.1 .3 2.8 .7 .10 .02 
Udder depth 12.2 .1 4.1 .4 .25 .02 
Front teat placement 25.8 .3 7.4 .8 .22 .02 

Trait VaT SE VIU SE Est SE 

'Divided by 1 6 .  
'Divided by 100. 

of p, which should reflect approximately the 
proportion of error variance in the expectation 
of a'A-la. For p = 0, the algorithm is the same 
as that given by HarviUe (5). For < 0, it is 
slower, and it diverges for B Z 1. In SM, 
choices of 6 5; .95 were found to give good 
convergence (19). In AM, the optimal value of 
p was between .5 and .8; an average value of 
.6 was best in this study. 

RESULTS AND DECUSSION 

The computation of the 33 trace points took 
8 h of CPU time on a Cray-2 (Cray Research 
Inc., Minneapolis, MN) supercomputer. After 
100 iterations of applying canonical transfor- 
mation, computing solutions, and calculating 
new values for variances and covariances, 
which took another 10 h of CPU time, the 
estimates of G and R were changing less than 
.014% on average in one round, and computa- 
tions were terminated. 

Estimates of heritability, genetic and resid- 
ual variances, and standard errors are in Table 
2. Heritabilities for milk, fat, and protein 
yields were .44, -42, and .40, respectively. 
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These estimates were higher than most other 
estimates of heritability using the SM (10). 
possibly indicating a large diffemce in selec- 
tion intensities between males and females 
(22). Higher values for heritabilities in this 
study could also result from the use of regis- 
tered animals only and from accounting for 
genetic levels of unknown parents. For com- 
parison, in a study using an intraherd AM in 
which herds were stratified by yield level, 
heritabilities for milk and fat were .37 and .42 
in the highest producing herds, respectively 
(21). Heritabilities for the type traits were gen- 
erally slightIy higher than those obtained in 
independent studies (17, 20), indicating 
smaller differences in selection intensities for 
these traits between cows and sires (22). 
Largest differences between estimates obtained 

stein Association genetic evaluations (20) were 
.06 for fore uddar attachment and .05 for udder 
cleft. 

Genetic and residual correlations between 
the yield and type traits are in Table 3. Genetic 
correlations among linear type traits were simi- 
lar to those reporred by VanRaden et aL (20); 
the largest difference in absolute magnitude 

in this study and t h ~  currently used in Hol- 
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was -33 for the correlation between udder 
depth and rear udder width. Seven traits had 
genetic correlations with yield traits greater 
than .20 (absolute value) and only 4 traits had 
genetic correlations with yield greater than .30. 
Genetic correlations between milk yield and 
type traits ranged from -.44 (udder depth) to 
.59 for dairy form. Genetic correlations be- 
tween udder depth and other udder traits were 
similar to those reported in other studies (8, 9, 
20). Final score was most highly correlated 
with fat yield (.33). Correlations of type traits 
with fat and protein yields were similar to 
those with milk yield, except that they tended 
to be slightly larger in magnitude. Singletrait 
selection for milk yield would result in deeper 
udders with more loosely attached fore udders. 
Traits associated with body size would be least 
affected by selection for milk yield. 

Response to Selection 
for Milk Yield 

Using parameter estimates obtained for 
yield and type traits, correlated responses in 
type traits were calculated assuming a speci- 
fied response to selection for milk yield Ob- 
taining a 4525-kg response (increase) in milk 
yield, which could occur over a 25-yr period, 
would increase dairy form 10.8 points, body 
depth 3.1 points, rear udder width 4.6 points, 
and decrease udder depth and fore udder at- 
tachment 4.4 and 4.9 points, respectively. Cor- 
related change for udder depth and fore udder 
attachment is in an undesirable direction. 

A restricted index was also used to calculate 
maximum response in milk yield while main- 
taining udder depth at its current value. Using 
the restricted index would result in a 15% 
decrease in genetic gain for milk yield. Stan- 
dardized weights for milk yield and udder 
depth are 70:30, or approximately a 2:l ratio, 
which is equivalent to current weights in the 
Type-Production Index (15). 

CONCLUSION 

selection for milk yield would cause deteriora- 
tion in some conformational traits. The udder 
traits would be those most affected. Selection 
to maintain udder depth would decrease prog- 
ress for milk yield by about 15%. 

Estimation of variance components by 
REML procedures for a multitrait AM is com- 
putationally feasible for data containing up to 
30,000 animals. The computer cost expen- 
e n d  in this study could have been fuaher 
redud with several Programming changes. 
For exampIe, the solutions to the mixed model 
equations could be obtained using robust itera- 
tive methods. Use of the JCG method in 
ITPACK (7) resulted in a fivefold reduction of 
the iteration time, provided that the coefficient 
matrix was not restricted to full rank as is 
required by SMPAK (7). The inversion time 
could decrease 50 times if only selected ele- 
ments of the inverse were computed from the 
sparse factors of the coefficient matrix (3). Use 
of such techniques might allow the results 
presented here to be computed on a worksta- 
tion or fast personal computer or allow much 
larger populations to be analyzed on a super- 
computer. 
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APPENDIX 

Extrapolation and Interpolation 
of the Trace Function 

Assume that the trace function has been 
tabulated for p points: ti = t (Q ,  i = 1,p. The 
parameters 6 am obtained by equating t to the 
approximating function in m points. For m = 1 
and arbitraq point k, 

t(@ = d ( 6 + @ = > 6 = n / t ( @ - a k  
161 

t(@ = n[w1/(81 + @ + w2/(62 + 0 1  

t(c(k+l = n[w1/(61 + &+l) + w2462 + 

For m = 2 and points tk and tk+l 

171 

ak+l)l 
where wi + w2 = 1. 

This system of nonlinear equations leads to the 
quadratic equation for 62 and, for example, can 
be solved using these formulas: 

21 = 
22 = 
P1 = 
P2= 
91 = 
e =  
a =  
b =  

c =  
6 2 =  
61 = 

Example 

four random effects (n = 4) are given. 

i ai ti 
1 2.0 1.8333 
2 3.0 1.2500 
3 4.0 .9500 

Let us compute the approximation to t3 
without using this point. Using [6] and point 

.1818) = 1.2571 for a relative error of .57%. 
Using 17, points ti and t2, and assuming WI = 
.2 and ~2 = .8, ~1 = .4583, 22 = 2375, pi = 
,7166, p2 = -.75, q1 = .0833, 42 = .05, a = 

1.1651, and t3 = 1.25007 for a relative error of 
.006%. In comparison, a linear interpolation 
would result in t3 = [t2 + t&2 = 1.3915 for a 
relative e m r  of 11.2%. 

Three trace points from a test data set with 

t2, 6 = 411.8333 - 2 = .1818 and t2 443 + 

.1735, b = -.0721, c = .0017,& = . O M ,  61 = 
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